// you’re reading...
1 Star2 Stars3 Stars4 Stars5 Stars (2 votes, average: 5.00 out of 5)
Loading...

Project Euler Solutions

Project Euler 145 Solution

Project Euler 145 Solution

Project Euler 145: Count reversible numbers in a range


Problem Description

Some positive integers n have the property that the sum [ n + reverse(n) ] consists entirely of odd (decimal) digits. For instance, 36 + 63 = 99 and 409 + 904 = 1313. We will call such numbers reversible; so 36, 63, 409, and 904 are reversible. Leading zeroes are not allowed in either n or reverse(n).

There are 120 reversible numbers below one-thousand.

How many reversible numbers are there below one-billion (109)?

Analysis

Staring at the patterns from a brute force run revealed two simple formulas that calculate the number of reversible numbers below 10n. There are:

Discussion

No comments yet.

Post a comment