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Fibonacci mod k 
 
I start by giving out a table of the first 50 Fibonacci numbers—
actually the first 51, because we begin with u0=0 (and I have a 
reason for that which will soon become apparent). 
 
Okay, which Fibonacci numbers are multiples of 10?   
Well, that’s easy enough—the multiples of 10 end in zero, and 
so we can read off u15, u30, and u45.  Okay, what’s the next 
one?  u60!   Well that’s certainly a good guess.  Can we be 
sure?  
 
Well, we can check it out by continuing to 
generate the sequence from 50.  That’s not 
so hard to do when we realize that we need 
to keep track only of the last digit.  And in-
deed we find that u60 is the next number to 
end in a zero.   
 
So does the pattern continue?––u75 and then 
u90 etc.?  That would certainly provide a real 
nice answer to my question:  
 
But how can we prove that?  Any ideas?   
 
Well, yes!  Look at u59.  It ends in a 1.  And u60 ends in 0, so 
that means u61 will also end in a 1.  So we have a consecutive 
0, 1 and from that point on the sequence of last digits will con-
tinue as if from the beginning: 0,1,1,2,3,5,8,3….  We conclude:  

the sequence of last digits is periodic with period 60.   
So the next 0 will indeed be at u75 and then u90 etc.  We con-
clude that for the entire infinite sequence: 

the multiples of 10 occur every 15th number. 

Well, that’s a nice result.  Now what I’m interested in here is 
the question of whether that kind of result might hold for other 
divisors as well.  For example, suppose I took the divisor 11, 
and asked which Fibonacci numbers were divisible by 11.   
 
The first multiple of 11 is clearly u10.  And from there, one eas-
ily sees that u20 u30 u40 and u50 are all multiples of 11.  Okay, 
things are looking quite promising.  Good.   

In this section,  we examine the 
question of which terms of the 
Fibonacci sequence have a 
given divisor k. 

n un  n un 
0 0    
1 1  26 121393 
2 1  27 196418 
3 2  28 317811 
4 3  29 514229 
5 5  30 832040 
6 8  31 1346269 
7 13  32 2178309 
8 21  33 3524578 
9 34  34 5702887 
10 55  35 9227465 
11 89  36 14930352 
12 144  37 24157817 
13 233  38 39088169 
14 377  39 63245986 
15 610  40 102334155 
16 987  41 165580141 
17 1597  42 267914296 
18 2584  43 433494437 
19 4181  44 701408733 
20 6765  45 1134903170 
21 10946  46 1836311903 
22 17711  47 2971215073 
23 28657  48 4807526976 
24 46368  49 7778742049 
25 75025  50 12586269025 

 

Last digits 
n un 
49 9 
50 5 
51 4 
52 9 
53 3 
54 2 
55 5 
56 7 
57 2 
58 9 
59 1 
60 0 
 

But the big question here is 
whether the pattern goes on 
forever?   Might there be some 
other multiples of 11 in the list.  
Like, say u36?.  Yep, those are 
the questions all right.  I ask 
them and and I am met with 
silence from the class. 
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The divisor k=2. 
Let’s take a real simple divisor.  Let’s take k=2.  Which terms 
are divisible by 2––that is, which terms are even?   
 
One obvious approach is to use what we’ve done for the last 
digits––because the last digit is enough to tell us whether a 
number is divisible by 2.  We see the pattern holds for the first 
60 numbers, so by the periodicity of the sequence of lasts dig-
its, it will hold forever. 
 
But there’s a sense in which the “right” argument for the divisor 
2 is much simpler than that.  We shouldn’t need so much of the 
table.  The key here is to fasten attention on the sequence of 
"parities"—replace each even number by E and each odd 
number by O.  We get 

E O O E O O E O O E O O, etc 
and we argue that it has to continue like this.  The reason we 
can make this argument is that the parity of the sum of two 
numbers is determined by the parity of each summand: the 
sum of two odds or two evens is even, and the sum of an odd 
and an even is odd.  So  

the “divisor 2” behaviour is periodic, with period 3. 
 
The divisor k=3. 
Okay, let’s move up.  Take the divisor k=3.  By looking at the 
sequence we can see that every 4th number is divisible by 3.  
Can we argue that this pattern must continue indefinitely  
 
Let's go for the parity argument from the case k=2.  In this 
case, "even" ought to mean "multiple of three" and I guess 
there will have to be two kinds of "odd" numbers, odd-1 which 
would be 1 more than a multiple of three, and odd-2 which 
would be 2 more than a multiple of three.  If we use 0,1 and 2 
for these three “mod-3 parities,” the pattern would go  

0 1 1 2 0 2 2 1 0 1 
There!––I stopped recording when I found a 0,1 because I 
knew that, from that point on, the pattern would just repeat.  
And since every fourth term is a zero, we conclude that every 
fourth Fibonacci number is divisible by 3 and: 

the “divisor 3” behaviour is periodic, with period 8. 
In more sophisticated mathematical language, we have shown 
that the Fibonacci sequence mod 3 is periodic with period 8. 
 

The parity of the sum of two 
numbers is determined by the 
parity of the summands.  This 
is an important argument to 
find, as it leads the way to 
mod- k arithmetic 

This is a great question to pose 
to the class, and then pick from 
the resulting forest(!) of hands, 
a volunteer to come to the 
board and deliver an explana-
tion 

Let’s be careful with this––
the crucial point is that, just 
like for the case k=2, the 
mod-3 parity of a sum can 
be deduced from the mod-3 
parity of the summands—
check it out.   

Another way we might go with 
this is to try to imitate the solu-
tion for k=10 and think about 
what the last digits would be if 
we wrote the numbers in base 
3.  In fact, the last digits that 
would occur would be 0, 1 and 
2, and we'd get exactly the 
pattern that we got above.  
 

It is clear from the table that, 
among the first 50 terms, 
every third term is even.  Will 
it go on forever like this?  
Can we produce an argu-
ment that this pattern will 
hold indefinitely?   
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Other divisors. 
Now we can do this for any divisor k––essentially what we re-
cord are the remainders that are left when multiples of k are 
removed, and the nice (and crucial!) property is that the se-
quence can be generated just using the Fibonacci rule on the 
remainders, as if they were the entire numbers.  This is the 
general analogue of the observation that the parity of a sum is 
determined by the parity of the summands.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In each case, we stop when we find a re-occurrence of the pair 
0 1––from that point on, the sequence must repeat.  Now the 
multiples of k are given by the zeros in the mod-k sequence, so 
we look at these.  We note that there may be several in a pe-
riod; in fact in the above examples, there are either 1, 2 or 4 
zeros in a period.  But one striking fact we observe is that  

within a period the zeros are equally spaced  

and so it follows that they will be equally spaced forever.  To be 
specific, we see that: 

The multiples of 2 occur every 3rd term 
The multiples of 3 occur every 4th term 
The multiples of 4 occur every 6th term 
The multiples of 5 occur every 5th term 

The multiples of 6 occur every 12th term 
and so forth.   
Now the question is––does this happen for every k?  Take, for 
example, k=31.  Is it the case that the multiples of 31 are 
equally spaced?  Well, the first thing to ask is: how do we know 
there are any multiples of 31?   

Could it be that no Fibonacci number is divisible by 31? 

(other than 0 of course.)  At first, it's not easy to see how to 
handle this question.  But it turns out to have a very elegant 
analysis.   

k Fibonacci sequence mod k period zeros/period 
2 0 1 1 0 1 3 1 
3 0 1 1 2 0 1 4 1 
4 0 1 1 2 3 1 0 1 6 1 
5 0 1 1 2 3 0 3 3 1 4 0 4 4 3 2 0 2 2 4 1 0 1 20 4 
6 0 1 1 2 3 5 2 1 3 4 1 5 0 5 5 4 3 1 4 5 3 2 5 1 0 1 24 2 
7 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 16 2 
8 0 1 1 2 3 5 0 5 5 2 7 1 0 1 12 2 
9 0 1 1 2 3 5 8 4 3 7 1 8 0 8 8 7 6 4 1 5 6 2 8 1 0 1 24 2 
10 0 1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1 5 6 1 7 8 5 3 8 1 9 0 9 9 8 7 5 

2 7 9 6 5 1 6 7 3 0 3 3 6 9 5 4 9 3 2 5 7 2 9 1 0 1 
 

60 
 
4 

11 0 1 1 2 3 5 8 2 10 1 0 10 1 
12 0 1 1 2 3 5 8 1 9 10 7 5 0 5 5 10 3 1 4 5 9 2 11 1 0 1 24 2 

 

To generate these “mod-k” 
sequences, we add the two 
previous terms just as before, 
but then we “cast out k” if ap-
propriate.   
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Start by thinking of what the Fibonacci sequence will look like 
mod 31: 

0 1 1 2 3 5 8 13 21 3 24 27 20 16... 
and so forth––on and on.  Now what will happen?  For exam-
ple, will we get the periodic type of behaviour that we found for 
the smaller values of k?  Let's fasten attention on that ques-
tion––does the sequence have to repeat itself at some point?   
The answer is yes, and the reason is, essentially, that there are 
only a finite number of possible values for the sequence so 
something has to repeat.  But it's important to be careful about 
this: for the sequence to repeat, what we need is a repetition of 
two consecutive values, so a proper argument has to consider 
the sequence of successive pairs: 

(0,1) (1,1) (1,2) (2,3) (3,5) (5,8) (8,13) (13,21) (21,3) (3,24)... 
Now there are only a finite number of possible such pairs (312 
to be precise, though one of these, (0,0), can't occur), so at 
some point, some pair must repeat.  So from that point on (ac-
tually, from the previous occurrence of that pair) the sequence 
will be periodic.   
 
But that doesn't show that the first repetition will occur with 0 1!  
In the above examples, that was always the case, but our ar-
gument doesn't yet show that.  And that’s the property that 
needs to hold in order for us to conclude that there’s a second 
zero in the sequence.   
 
So how might we argue this––that the first repetition has to be 
with the pair (0,1)?  Well, what we have just argued is that 
there has to be some repeating pair––say, to take an specific 
example, (4,17).  Then the sequence will have the form: 

0 1 1 2.... a 4 17 21... b 4 17 21... 
where I have used a and b to denote the terms immediately 
before the two instances of the repetition.  But with two con-
secutive terms of the sequence, we can go backwards as well 
as forwards: we can deduce that a and b must both be equal to 
13.  Thus the pair (13, 4) repeats already before (4, 17).  We 
can continue backwards in this way until we reach 0 1.  So the 
first repeat just has to be (0, 1).  That's a nice argument. 
 
We also observe, from counting the total number of possible 
pairs, that the repetition of (0,1) must occur within the first 312 
terms.  We state the general result: 
 

The Periodic Theorem.   
The Fibonacci sequence mod k is periodic,  

with period less than k2 . 
 

A note about the argument that 
the first repeat must be with 0 
1.  The orthodox mathematical 
way to make this argument is 
to suppose that 4 17 is the first 
repeat, and then get a contra-
diction.  But my students seem 
to come up with the argument 
in the form at the right, and 
somehow this strikes me as 
more direct and more natural. 

 

Consider the sequence of 
pairs!––that's a nice piece of 
methodology and is in fact one 
of the key ideas behind the 
solution of second order recur-
sive equations.   
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Are we done?  No!––we still haven't argued that the multiples 
of k are equally spaced.  To get that, we have to know that the 
zeros that occur within a period are equally spaced.  How are 
we to do that?   
 
In thinking about this, it is useful to have some examples to 
study.  Below I present the last three cases tabulated above: k 
= 10, 11 and 12––these illustrate the three possibilities for the 
number of zeros per period that we've seen so far.  I celebrate 
the "cyclical" nature of a period by putting the terms in a circle, 
the primary zero at the top, with the sequence running clock-
wise.   

K=10
Period = 60
4 Zeros
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k=12

Period = 24

2 Zeros

 
 
Now study the pictures––what patterns can you see?  The 0 at 
the top is always flanked by two 1's.  As we move away from 
this 0, in both directions simultaneously, the pairs of numbers 
we get, one from the right and one from the left are either equal 
or they sum to k and this behaviour alternates.   
 
Look at the k=10 case.  The pairs on either side are (1, 1) then 
(9, 1), then (2, 2), then (7, 3), and so forth.  And if you think 
about it, this behaviour follows easily from the Fibonacci rule!   
 
Okay: let’s roll with this.  Suppose we hit a 0 going in one direc-
tion.  What will the corresponding term on the other side be?  
Well the pair of terms will be either equal or negatives.  And in 
both cases the other term will be a 0 also!  That is, as soon as 
you hit a 0 going in one direction, you have to hit one going the 
other way also.  We conclude that the zero at the top must be 
half-way between the two zeros which flank it.   
 
But this argument actually works starting at any zero, and 
working out in both directions, every zero is half-way between 
the two zeros which flank it.  If you think about it, this means 
the zeros have to be equally spaced around the circle.  And we 
have shown that the zeros are equally spaced within a period.   
And we are done! 

1
1

1
2

3

9
2

7

0

This property of the pairs of 
numbers can be stated in a con-
ceptually more powerful way: as 
we move away from zero, the 
pairs are alternately equal and 
negative to one another mod k.  
For example, 9=-1 mod 10 be-
cause if you cast 10 out of 9 
you’d get -1..  That’s the lan-
guage we’ll use now: the pairs 
are alternately equal and nega-
tives. 
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Problems 
1.  Show that u2n   is a multiple of un .  More generally, suppose n is a multiple of m.  Does it follow that un is 
a multiple of um ? 

2.  TRUE or FALSE? 
(a)  If n divides into u250 and u150 then it must divide into u50. 
(b)  u150 is divisible by both u15 and u10 . 
(c)  There is no Fibonacci number ending in the digits 63. 
(d)  There are infinitely many Fibonacci numbers ending in the digits 73. 
(e) u116 is divisible by 1,542,687. 
(f)  There is at least one Fibonacci number with 27 digits. 
(g) u100 and u103 have no common prime factor. 
3.  Find the greatest common divisor (GCD) of u200 and u309 . 

4.  TRUE or FALSE? 
(a)  If  a = n/m   then ua  =  un/um 
(b)  If  b = nm   then ub  =  unum  
(c)  If  c = LCM(n,m)   then   uc  = LCM(un,um) 
(d)  If  d = GCD(n,m)   then   ud  = GCD(un,um) 
(e)  u150 is divisible by the product of u15 and u10 . 
(f)  u180 is divisible by the product of u15 and u10 . 
5.  Investigate: un is prime if and only if n is prime. 

6.  If we use the Fibonacci rule but with a different starting point, then we get a different sequence.  For ex-
ample, if we start with 1, 3, we get the sequence  

1, 3, 4, 7, 11, 18, 29, … 

This is known as the Lucas’ sequence.  Investigate the same divisibility questions for this sequence that we 
studied for the Fibonacci sequence.  For example, given a divisor, are there always multiples of it in the se-
quence, and if so, are they equally spaced?  

7.  Can the product of two Fibonacci numbers ever be a Fibonacci number? 

8.  The sequence of ratios  u2n/ un   starts off  1, 3, 4, 7, 11…  That is, it seems to be the above Lucas’ se-
quence.  If you can show that it satisfies the Fibonacci sum rule, you will have a proof of this.  Can you show 
that?  [One idea is to try induction.] 

9.  There's one other interesting question, and that is what are the possible number of zeros that can occur 
inside a period of the Fibonacci sequence mod k?  In the above examples, there were 1, 2 or 4 such zeros.  
Are there other possibilities, and what are they?  The remarkable fact is that one of these possibilities always 
occurs––there are always either 1, 2, or 4 zeros in a period.  Can you show this?   
[I will get you started.  Start at the top 0 and work out both ways till you come to the first zero on either side.  
Let these zeros look like  a 0 a  and  b 0 b.  From our observation above, we must have a=b or a=-b (modk).  
Argue that if a=b, then we either have the situation of k=11, with one zero in a period (if a=1) or the situation 
of k=12 with two zeros in a period (if a≠1).  And if a=-b (modk)., we must have the situation of k=10 with four 
zeros in a period.] 


